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Abstract

In this paper, we present a dynamical systems approach to material damage identification. This
methodology does not depend on knowledge of the particular damage physics of material fatigue. Instead,
it provides experimental means to determine what are practically observable and observed facts of damage
accumulation, thus making it possible to develop or experimentally verify appropriate damage evolution
laws. A concept of phase space warping is used to develop new damage tracking feature vectors from
measured time series through phase space reconstruction. These feature vectors provide critical information
about the dimensionality of a damage process that was missing from an old scalar metric described in
previous work. Damage identification is achieved by applying either proper orthogonal decomposition or
smooth orthogonal decomposition to these vectors. The method is experimentally validated using an elasto-
magnetic system, in which a harmonically forced cantilever beam in a non-linear magnetic field accumulates
fatigue damage. Both damage identification methods yield a single active damage mode that shows power-
law-type monotonic trends, which is also consistent with a result obtained using the old scalar metric. These
results are shown to be in good agreement with the Paris fatigue crack growth model during the time period
of macroscopic crack growth. Using this simple model, accurate time-to-failure predictions are shown well
ahead of actual beam fracture. In addition, this identification scheme provides a much-needed insight into
the dimensionality of incipient or early fatigue damage accumulation process, which is shown to be
describable by only one scalar damage variable for this specific experiment.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Scientific and engineering literature abounds with material damage models based on physical
insights or empirical observation. These models are usually focused on mechanics of fatigue
damage accumulation [1–5]. Despite the variety of approaches to model the mechanics of fatigue,
there is a clear lack of practical methods for tracking incipient fatigue damage in operating
machinery. There are several reasons for this discrepancy. Firstly, although physics-based damage
models are relatively easy to verify in simple experimental systems using beams or plates subjected
to constant amplitude cyclic loading, they are usually unable to provide valid models of fatigue
damage accumulation in complex forcing environments. Furthermore, most of these models
ignore basic observability of their damage states (i.e., crack length) in practical, real-life situations
(e.g., when the direct measurement of a crack size is impossible or impractical). Secondly, almost
all statistical (cycle counting) damage models gloss over the role that the initial damage state has
in the true life cycle of structures [6].
The dynamical systems approach to damage evolution [7] provides new insights to traditional

damage physics. It provides a consistent, robust and abstract mathematical framework for
exploring damage evolution dynamics. In addition, it enables one to relate experimental
measurements to theoretical or empirical damage evolution laws. Damage in machinery or
structural systems is a complex phenomenon that can manifest itself in many different modes. In
this paper, we make no attempt to theorize about the ‘‘hidden’’ physical nature of damage.
Instead, we aim to develop appropriate concepts and procedures for identifying phenomen-
ological (empirical) regularities from analysis of measured time series. These developments do not
rely on a physical description of damage, but we demonstrate that they are consistent with such
physics-based models.
The approach proposed here is to determine experimentally the observable and observed facts

about particular damage in a simple experiment with the aim of formulating phenomenological
regularities. Consequently, experimental links can be established between the data-based metrics
and complex, ‘‘hidden’’ damage phenomena. As a result, one acquires the ability to develop
practical empirical (phenomenological) damage evolution laws and to experimentally validate
available first-principles damage models. Damage laws that are developed or validated in this way
will have the proper physical characteristics and appropriate time and spatial scales for practical
damage diagnosis and prognosis applications.
In the next section, a brief overview of the related literature is used to frame our approach to

damage diagnosis. A brief description of our previously presented damage tracking procedure is
given in the following section, with new improvements and additions. We also demonstrate the
application of the described techniques to an experimental magneto-elastic system with
accumulating fatigue damage. Finally, the results of experimental damage identification, failure
prediction and their implications are discussed, followed by conclusions.
2. Background

Fatigue damage accumulation spans multiple length scales of micro- and macromechanics of
fracture. Solid-state physics and material science study the subject of dislocations and
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submicrocracks. These phenomena describe the damage initiation in materials characterized by
10�9–10�7m length scales. However, the solid-state theories describing the physics at these length
scales are not appropriate for prediction of material properties due to the large number of discrete
damage levels. In continuum damage mechanics (CDM) [4,8,9], the state space of incipient damage
is very high dimensional, but nonetheless the explicit evolution equations are available. This
theory deals with the subject of micro- and small macrocracks that are distributed in the material
characterized by 10�6–10�2m length scales. Finally, large macroscopic cracks are the subject of
mechanics of solids and structures, i.e., macromechanics of fracture. In fracture mechanics [10–13]
the damage state space is quite low dimensional; however, these evolution equations as well as
CDM are difficult to relate to online measurements.
In machinery and structural health monitoring (MSHM) systems, we are faced with the problem

of relating numerous system measurements back to the appropriate damage state. Therefore, the
important and natural questions that need to be answered are (a) what are the appropriate
damage states that can be tracked with available measurements, (b) how can this tracking be
accomplished? and (c) what is the appropriate damage evolution law that can be used for
predicting imminent failures?
The approach presented here builds upon previous papers [14,15] which described a novel

method for tracking hidden variable drifts in a hierarchical dynamical system.1 This technique
was developed in a dynamical systems framework for studying damage evolution [7]. The work
focused on an electromechanical system, in which mechanical vibration measurements were used
to track a drifting voltage of a supply battery. It was demonstrated both experimentally and
analytically that the tracked quantity was in a one-to-one relationship with the actual battery
voltage (measured independently). In fact, under circumstances to be expected in many cases, it
was not only in one-to-one, but also in linear correspondence. In our previous work, we have
already alluded to the application of these methods to material damage problems; here, we present
the first results in this direction.
In this paper, we show that the presented techniques can be used to develop a damage tracker.

This tracker provides practical information about what the observable facts of fatigue damage
evolution are. Therefore, it can be used to verify the applicability of available physics-based
damage laws in MSHM. In addition, the obtained data can be used to guide the development of
empirical damage evolution laws that would possess all appropriate length and time scales for
applications in MSHM.
3. Dynamical systems approach to damage evolution

In the dynamical systems approach [7], damage is viewed as a point evolving in an extended
phase space of a hierarchical dynamical system. In this system, slow-time damage evolution causes
parameter drifts in a subsystem describing dynamics of directly observable fast-time variables:

_x ¼ fðx;lð/Þ; tÞ; _/ ¼ Egð/;xÞ; ð1a;bÞ
1For the merits of this technique as compared to other damage detection/diagnosis methods the interested reader is

referred to Refs. [14,15], where it is discussed in great detail.
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where x 2 Rn is a directly observable, fast-time variable; / 2 Rm is a hidden fatigue damage, slow-
time variable; l 2 Rs is a function of f representing the material parameters in Eq. (1a); a rate
constant 0oE � 1 defines a time scale separation between fast and slow-time dynamics; and
overdots denote differentiation with respect to time t. We assume that fast-time dynamics takes
place in a region of the extended fast-time phase space that is a compact subset of Rn � R1:
This formulation is appropriate for systems with early or incipient fatigue damage

accumulation [5]. This type of damage accumulation can be characterized by a time scale that
is several orders of magnitude larger than a time scale associated with the dynamic response of the
corresponding structure. In what follows, we summarize the main ideas behind our damage
tracking strategy, noting any improvements to the already published procedure.
3.1. Damage tracking function

In an experimental context we usually do not have access to the analytical form of governing
differential equations (1). However, we do have access to measurements from the fast-time system
(la). These measurements are usually sampled at uniform time intervals ts, and the dynamics (i.e.,
the equivalent topological structure of the extended phase space) of Eq. (1a) can be reconstructed
using a delay coordinate embedding [16,17]. In this procedure, the measured scalar time series
fxðrÞgM

r¼1 is converted to a series of vectors y
TðrÞ ¼ ½xðrÞ; xðr þ tÞ; . . . ; xðr þ ðd � 1ÞtÞ� 2 Rd ; where t

(multiple of ts) is a suitable delay time, and d is the appropriate embedding dimension. Embedding
parameters, t and d, are usually determined using the first minimum of the average mutual
information [18] and method of false nearest neighbors [19], respectively.
The reconstructed state vectors are governed by an as yet unknown map of the form

yðr þ 1Þ ¼ PðyðrÞ;/Þ: ð2Þ

The concept of Phase space warping refers to the small distortions in the fast-time system’s
vector field caused by slowly drifting parameters (i.e., damage evolution). Based on this concept,
in Refs. [14,15] the following damage tracking function:

Ekð/; yðrÞÞ ¼ PkðyðrÞ;/Þ � PkðyðrÞ;/0Þ ð3Þ

was proposed. In Eq. (3) Pk is the kth iterate of the map defined by Eq. (2), / is the current
damage state, and /0 is the reference or healthy damage state.
In Refs. [14,15], a suitably averaged Ekð/; yðrÞÞ was successfully used to track a scalar battery

voltage variable. It was demonstrated that the relationship between the tracking function and the
damage variable can be well approximated by an affine map, under certain linear observability
conditions.
To actually calculate the tracking function Ekð/; yðrÞÞ for any given initial condition y(r),

we need to know how the fast subsystem evolves over the time interval kts for the current value
of /; as well as how this subsystem would have evolved for the reference value of /0: Since
the system’s fast-time behavior for the current value of / is directly measurable (i.e., we can
reconstruct the fast-time trajectory using a sensor measurement from the fast subsystem),
the strategy is to compare it to the predictions of a reference model describing the fast
system’s behavior for / ¼ /0 þ OðEktsÞ: Here, local linear models are used as the simplest form
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of a globally non-linear reference model

yðr þ kÞ ¼ AkyðrÞ þ ak; ð4Þ

where Ak is a d � d matrix and ak is a d � 1 vector. Eq. (4) approximates Eq. (2) for a particular
point y(r) in the reference system’s reconstructed phase space. Note that, in practical applications,
other modelling solutions such as neural nets (e.g., Ref. [20]) or auto-regressive moving averages
(e.g., Ref. [21]) may be more appropriate. The parameters of local linear models are determined by
calculating the best linear fit between N nearest neighbors of y(r) and their future states. Then the
tracking function Eq. (3) for the initial point y(r) can be written as

Ekð/; yðrÞÞ ¼ yðr þ kÞ � AkyðrÞ � ak þ EM
k ðyðrÞÞ

¼ Ekð/; yðrÞÞ þ EM
k ðyðrÞÞ; ð5Þ

where Ek
M(y(r)) represents the local linear model error, and

Ekð/; yðrÞÞ ¼ yðr þ kÞ � AkyðrÞ � ak ð6Þ

is the estimated tracking function that can be determined experimentally. The use of Ekð/; yðrÞÞ in
place of Ekð/; yðrÞÞ is justified, if Ek

M is small compared to Ek.
3.2. Damage tracking feature vector

In previous work [14–15,22], a suitable norm of the averaged value of the estimated tracking
function over one data record /jjEkjjS provided a good tracking metric for scalar damage
variables. However, as discussed in detail in Ref. [14], there generally will be superfluous
fluctuations in the tracking results caused by: (1) the change in the population of points from data
record to data record; and (2) the changes in the map of Eq. (2) and model error Ek

M from point to
point.
The population changes are caused by the evolution of / that acts as a bifurcation parameter

for Eq. (1a). As parameters of Eq. (1a) traverse their range due to the accumulating damage, the
system will undergo changes in its steady state behavior. These changes will be abrupt and cannot
be used to track /; which evolves smoothly. This will also cause a change in population of points
from record to record. The old tracking metric could only deal with minor changes in population
of points that extended the original coverage of the reference population.
Two main sources of superfluous fluctuations, which are not related to changes in / are: (1)

changes in the model fit error Ek
M from point to point, caused by a non-uniform coverage of

reference phase space by the points on a reconstructed trajectory; and (2) changes in the actual
non-linear mapping of Eq. (2), also from point to point. In the old metric the fluctuations due to
the variability of modelling error where compensated for by a suitable weighted average of ||Ek||
over one data record, while the fluctuations caused by the change in the mapping of Eq. (2) were
not alleviated.
Here, we compensate for all sources of Eq. (2) fluctuation by using a new tracking feature

vector. This new approach evaluates the average value of the estimated tracking function in Ns
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disjoint regions Bi ði ¼ 1; :::;NsÞ of the reconstructed phase space

ek
i ¼ Bik k�1

X
yðrÞ2Bi

Ekð/; yðrÞÞ
�� ��; ð7Þ

and combines them in one damage tracking feature vector:

Sk ¼ ½ek
1 ; e

k
2 ; :::; e

k
NS
�T; ð8Þ

where each data record will have a total of Ns (Sk 2 RNs) statistics.
The choice of parameter k depends on the data sampling rate and effect of noise on the

sensitivity of the tracking function. The parameter k also affects the sectioning of the phase space
into the disjoint regions, which should be done in such a way as to alleviate the sources of
unrelated fluctuations with regards to the previous method. In particular, the estimated tracking
function Eq. (6) for the points within the same region Bi should have approximately the same
sensitivity with respect to damage variable. This would reduce fluctuations due to the change in
the mapping Eq. (2), as well as the variation in the linear fit error Ek

M within one region. With the
sectioning of phase space we are also more likely to have several regions that have approximately
constant population of points from record to record. Thus, the effect of changes in steady state
behavior on the feature vector statistics is also reduced.
It is conjectured based on previous work [14-15,22] that there is an affine projection V/ :

RNS ! Rm that maps the proposed feature vector Sk onto the damage state / 2 Rm:

/ ¼ HSk þ h; ð9Þ

where / is an estimate of the actual damage state, H is an m � Ns; matrix, and h is an m � 1
vector.

3.3. Damage identification

In many practical situations we do not have the direct measurement of damage state or means
to estimate the affine projection parameters of Eq. (9). Therefore, the damage tracking feature
vectors Sk have to be used directly to determine the observable facts about the hidden damage
state. Here, we focus on a fatigue damage identification and consider two different approaches to
this problem.

3.3.1. Smooth orthogonal decomposition (SOD)
The SOD is a generalization of the optimal tracking method [25] that relies on the existence of

underlying deterministic behavior of the damage accumulation process but does not require its
model. This method is based on maximizing smoothness and overall variation in the feature
vector, found by solving an eigenvalue problem. For completeness we give a brief description of
the procedure in the following paragraphs.
The feature vector Sk, Eq. (8), is estimated for Nr data records. These vectors are arranged in an

Nr � Ns damage matrix, called Y. Each column of this matrix is normalized by subtracting its
mean and scaling it to unit norm. Next, we identify the SOD-based tracking metric by a linear
projection of the matrix Y,

us :¼ Yc; ð10Þ
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that varies smoothly. This can be accomplished by defining the ðNr � 1Þ � Nr derivative matrix

D :¼

1 �1 0 . . . 0

0 1 �1 . . . 0

..

. . .
. . .

. . .
. ..

.

0 . . . 0 1 �1

2
66664

3
77775

ð11Þ

and minimizing the following ratio with respect to c:

gðusÞ :¼
Dus

�� ��2

us

�� ��2 : ð12Þ

In minimizing g we maximize the smoothness and overall variation of us: The minimum of g is the
smallest generalized eigenvalue l of the following eigenvalue problem:

½ðDYÞTDY�c ¼ l½YTY�c: ð13Þ

The eigenvectors corresponding to the smallest eigenvalues give the optimal c and, hence, us:

3.3.2. Proper orthogonal decomposition (POD)

The POD, Singular Value Decomposition (SVD) or Karhunen–Loeve Decomposition has been
widely used to estimate the number of active states in non-linear dynamical systems [23,24] and, in
general, for obtaining low-dimensional approximations of high-dimensional processes. Proper
orthogonal modes (POMs) have also been instrumental in studying linear and non-linear mode
interactions in systems [26]. Damage evolution even in linear materials (linear elastic fracture
mechanics) is a highly non-linear process. The dimensionality of this process cannot be
investigated using linear statistics. However, the POD of the damage matrix Y should identify the
active damage states (i.e., the POMs with the highest energy content or modes corresponding to
the largest singular values of Y).
Here we give a brief description of the discrete version of the POD, which is the SVD. Using the

SVD, the matrix Y can be written in the form

Y ¼ UKVT; ð14Þ

where U ðN � NrÞ and V ðNs � NeÞ are unitary matrices, and K is a diagonal matrix of size
Nr � Ns containing Ns singular values, which are arranged in decreasing order. The POD-based

tracking metric, up; will be given by the columns of U or the proper orthogonal coordinates
(POCs) corresponding to the largest singular values of Y.
The POD analysis will also test our hypothesis that the damage state of the considered

experimental system is a scalar variable. In other words, our hypothesis will be confirmed if only
one dominant POM is identified.
4. Damage accumulation in a magneto-elastic oscillator

The experimental system is a version of a well-known, two-well magneto-elastic oscillator [27]
obtained after modifying the apparatus used in Ref. [14]. The system is a clamped–free beam
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restricted to a single degree-of-freedom by stiffeners. Two permanent rare-earth magnets near the
beam’s free end provide a two-well potential (see Fig. 1). The beam displacement is measured by a
strain gauge mounted close to the clamped end. A shallow notch is machined in the beam below
the strain gauge and just above the stiffeners. The system is mounted on a shaker and is forced at
8Hz. The forcing amplitude is set to obtain chaotic output.2 The damage in the beam slowly
accumulates for approximately 3.17 h of operation, until the beam suffers complete fracture at the
notch. Strain gauge output is sampled at 160Hz sampling frequency (ts ¼ 0:625� 10�2 s),
digitized (16-bit A/D), and stored on a computer.
The experiment was stopped after every 10min of data acquisition to take a digital image of the

beam profile near the notch. During the image acquisition, the beam was always positioned in the
same potential well, so that the surface of the notch was in tension. Subsequent to taking the
image, forcing was restarted and data collection resumed after letting initial transients die out.
Since the pulling force from the magnets was constant, the change in the beam configuration was
due to the decrease in the beam stiffness at the notch caused by the fatigue damage accumulation
as the experiment progressed. This change is determined by estimating the difference in the slope
of the beam across the notch using the acquired digital images.3 This change in the slope was used
as an independent measurement of the beam damage shown in Fig. 2. In the inset we sample
images taken during the experiment at (from left to right) 0, 3 and 3.2 h.
Delay time and embedding dimension were estimated to be 6ts and 5, respectively. The first 214

data points were used for the reference data set, and N ¼ 16 nearest neighbors were used for the
local linear model parameter estimation. Throughout the experiment the system underwent many
bifurcations that caused repeated periodic/chaotic transitions (see Fig. 3). Thus, loading on the
crack was irregular and primarily chaotic.
In Ref. [27] the Dufflng’s two-well equation was shown to be a suitable model for this

experimental system. Using this model we have investigated how the sensitivity of the tracking
2Note that the chaotic response is used in this case merely to simplify data acquisition: a more general method, such

as stochastic interrogation [28], could be used for non-chaotic systems.
3MATLAB image processing toolbox was used to determine the tangents to the sections of the beam edge before and

after the notch.
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Fig. 2. Plot of angular deflection across the notch during experiment, calculated from digital image. The inset shows

photos on the notch taken at 0, 3 and 3.2 h, also showing the first visible crack after 3 h.

Fig. 3. Passage through a periodic window occurring during the experimental run.
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function Eq. (3) changes from point to point in its phase space. The model parameters were
chosen so that it exhibited a chaotic response and the effect of the notch was modelled by a
decreasing stiffness coefficient. It was found that for small k the sensitivity was mainly a function
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of initial position and initial velocity had a negligible effect on it. For larger k the largest
sensitivities were observed to cluster close to the unstable manifold of the system. The presence of
noise in the experimental data also limits the range of possible A; values. Thus, even though the
sensitivity was higher for large k values, the estimation of the tracking metric and sectioning of the
phase space into the regions of approximately similar sensitivities are much easier for smaller k

values. Therefore, for this study we set k ¼ 1 and sectioned the phase space using equally spaced
hyperplanes perpendicular to the position coordinate.
Upon completing the embedding and modelling process, we split the data into 456 non-

overlapping records of tD ¼ 4� 103ts size. The feature vector S1 was estimated by calculating the
short-time prediction error E1 of the reference model for each record. The reconstructed phase
space was partitioned into Ns ¼ 16 disjoint regions. Partitioning was done using regular grid
divisions along the third coordinate of y. This formed the matrix Y of size 456� 16: From each
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row of Y we subtracted the mean and scaled it to unit norm. Thus, each row of Y can be treated as
a feature vector, and each column represents the time history of one particular feature. The results
of these calculations are shown in Fig. 4.
5. Results and discussion

In the current experiment, we have independent damage state measurement obtained from
digital images (see Fig. 2). However, its resolution and sampling make it inadequate for estimating
the affine projection parameters of Eq. (9). In most practical situations, we do not have the direct
measurement of damage state, and so are forced to infer information about a hidden damage state
from available measured statistics. Thus, we turn to the analysis of the damage tracking feature
vectors.

5.1. Fatigue damage identification

The components of the damage tracking feature vectors (see Fig. 4) clearly show power-law-
type monoton-ically increasing trends. However, some of the components seem to have better
signal-to-noise ratios. For damage identification purposes, we have calculated generalized
eigenvalues of Eq. (13) and singular values of matrix Y. The results are shown in Fig. 5. From this
picture, it is clear that the smallest eigenvalue is at least one order of magnitude smaller than the
next smallest; similarly, the largest singular value is at least one order higher than the next largest.
This clearly demonstrates that our feature vectors capture some scalar damage process occurring
in the system.
Fig. 5. Damage identification: singular values of matrix Y, K; and eigenvalues of Eq. (13), D.
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?? .
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The tracking metrics jp and js corresponding to the largest singular value and smallest
eigenvalue are plotted in Fig. 6, respectively. For comparison purposes we scale both metrics so
that they vary from zero to one. The trend, which was apparent in the feature vector statistics,
Fig. 4, is clearly present in enhanced form in both tracking metrics. The two trackers are virtually
indistinguishable. Thus, both damage identification methods yield practically equivalent damage
state trackers and, in this particular experiment, the damage accumulation process seems to be
described by a scalar state variable.
These results are in good agreement with the tracking obtained using the old scalar tracking

metric [14], as shown by a dotted curve in Fig. 6 (this metric was also scaled for comparison
purposes). These curves closely follow the identified scalar damage modes, only slightly deviating
from them for a short period of time at the 2.5 h mark. The observed consistency in the tracking
methods is attributed to the absence of major deviations in data records from the population of
points in the reference data set. The fact that in this particular experiment only scalar damage was
identified was also favorable for the old tracking metric. However, the new tracking metrics have
the ability to also deal with higher dimensional damage variables.

5.2. Validation of damage identification

The static angular deflection across the notch calculated from digital images (see Fig. 2) is seen
to increase in a way that is qualitatively similar to the tracking metrics. It was stated that generally
we expect to find, linear one-to-one relationship between the tracking metrics and the independent
measurement of damage. Fig. 7 presents a plot of the angular deflection data versus. the local
average values of the tracking metrics. The average was taken around the time when the digital
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Fig. 7. Plot of the damage tracking metrics versus. angular deflection: hj�1
s i; J, and hj�1

p i, W. The approximately

linear, one-to-one relationship is consistent with the linear observability assumption (linear fits to: hjsi; ———; and

hjpi; - - -).
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images were acquired. We clearly see the approximately linear, one-to-one relationship, consistent
with the theory (refer to Eq. (9)).
The damage variable in Eq. (1b) is not tied to any particular physics of damage. For example, f

is not necessarily the length of the crack in this fracturing vibrating beam experiment. This simple
experiment clearly demonstrates that even when the load on the crack tip is complex (i.e., a
combination of periodicand chaotic forcing, see Fig. 3), and well before any
visible cracks are present (i.e., during the initial damage accumulation and crack initiation
stages), the observable damage evolution obeys a simple scalar power-law type behavior.
Therefore, we speculate the existence of a suitable internal scalar variable, which need not be the
crack length (in fact, during a small crack accumulation stage the crack growth rate is not a
smooth function of crack length [29,30]) that evolves monotonically and smoothly.
Currently there is no acceptable macroscopic damage evolution model for the initial damage

accumulation process (when the damage occurs at the scale of the microstructure). However,
there are well-developed models that govern the growth of macroscopic cracks. The most
notable is the Paris equation which relates the per cycle derivative of a crack length, da/dN, to a
range of stress intensity factor, DK ¼ FDsðpaÞ1=2 (where a is a crack length, N is a cycle count, Ds
is a stress range, and the value of F depends on the geometry and relative crack length), using a
simple power law,

da=dN ¼ cðDKÞ
m; ð15Þ

where c is a small constant. Since the forcing of our system was stationary and harmonic the per

cycle derivative will be proportional to the time derivative of a crack length _a ¼ da=dt � da=dN:



ARTICLE IN PRESS

D. Chelidze, M. Liu / Journal of Sound and Vibration 281 (2005) 887–904900
Also, for a majority of metallic materials, the exponent m takes values from m ¼ 2 to 6. For
carbon steel, as is the case for our experiment, the magnitude of m ¼ 4 is often recommended.
Now we hypothesize that for a macroscopic crack propagation stage our observed damage

variable f is related to the actual crack length. To verify this hypothesis, we rewrite the Paris
equation replacing a with f as

_f ¼ cðFDsðpfÞ1=2Þ4 ¼ Ef2; ð16Þ

where E ¼ cp2ðFDsÞ4 is some small constant. Integrating this equation in time gives

f�1
¼ �Et þ b; ð17Þ

for some integration constant b: Thus, Eq. (17) gives a linear relationship between 1=f and time t.
Our hypothesis is confirmed by plotting the reciprocal of our damage tracking metrics versus time.
Fig. 8 depicts that the reciprocal of j is a linear function of time for time interval from t ¼ 2:9 to
t ¼ 3:17; just before the complete fracture.
For comparison purposes, a reciprocal of the old scalar metric is also plotted in Fig. 8. While it

still shows a linear behavior right at the end of the experiment, the time interval of this agreement,
t 2 ð2:45; 3:17Þ; is approximately two times shorter than for the new metrics, t 2 ð1:9; 3:17Þ: This is
due to the deviations observed in Fig. 6. Therefore, the new identification schemes provide more
consistent damage tracking data that are in good agreement with the simple power-law mode for
Eq. (16) macroscopic crack growth.
Fig. 8. Plot of the reciprocals of the tracking metrics versus time: j�1
s ; ———; j�1

p ; - - -; corresponding linear fits, - � -;
and reciprocal of the old scalar tracking metric, ?? . The data on the time interval from t ¼ 1:9 to t ¼ 3:17 are used
for linear fits.
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5.3. Failure prediction

Based on the global damage tracking information described above, it is possible to predict when
this particular system will reach some predetermined failure state. For example, we can define a
failure surface by 1=j ¼ 3 (see the horizontal line in Fig. 8). Then, by fitting a straight line to the
1=j versus time data and finding its intersection with the failure surface one can estimate the
remaining time to failure.
Fig. 9 shows the results of the remaining useful life estimation based on the SOD-based tracking

metric data from Fig. 8. Here, a linear fit to the first 128 points from Fig. 8 was used for the first
time to failure estimate. For the consequent estimates this 128-point window was moved
repeatedly by one point. The solid straight line in Fig. 9 shows the true remaining time to failure
drawn a posteriori. The black dots represent the estimates of remaining time to failure based on
the 128-point linear fits. The shaded background shows the uncertainty in the estimate based on
the linear fit error.
The graph in Fig. 9 is a result of a very simple calculation and it gives accurate estimates of time

to failure when about a third of useful life is still remaining. These results can be improved
dramatically by employing a model-based recursive estimation technique discussed in Ref. [22],
which is beyond the scope of this paper and will not be considered here.
6. Conclusions

In this paper we have presented a dynamical systems approach to material damage
identification. This methodology does not depend on knowledge of particular damage physics
Fig. 9. Remaining time to failure estimates based on a simple power law model, ??; actual time to failure known a

posteriori, ——. Shaded background shows the uncertainty in the estimate.
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of material fatigue. Instead, it provides experimental means to determine practically observable
and observed facts of damage accumulation, thus making it possible to develop or experimentally
verify appropriate damage evolution laws.
A detailed description of the damage identification algorithm was given. Experimental

procedures for estimating the tracking functions in a reconstructed phase space, the calculation of
the damage tracking feature vector, and the appropriate damage tracking metrics were given
before describing an experimental application. The algorithm was applied to a magneto-elastic
oscillator with fatigue damage accumulation in a beam. As the damage grew, the system
underwent many bifurcations that caused repeated periodic/chaotic transitions. This resulted in a
very complicated strain time series.
The recorded strain time series was used for damage tracking. Two different methods

of damage identification smoothly and monotonically followed the accumulating damage
and provided practically equivalent damage trackers. They both showed that only one scalar
variable is sufficient to describe the fatigue damage accumulation in the beam. Despite
the absence of an established physical damage state, the new metrics show that only one
scalar variable is needed to describe the dynamics of both incipient and macroscopic
damage accumulation. These results were also consistent with data obtained using the
old scalar tracking metric, described in previous work [14]. The first visible crack in
the beam occurred after the 3 h mark, but the tracking showed monotonically increas-
ing power-law-type-trends well ahead of that point, indicating the sensitivity of the tracking
method.
Static change in the slope of the beam across the notch was used as an independent

measurement of damage. It is seen to increase in a qualitatively similar way to the tracking
metrics. In fact, this measurement was shown to be in approximately linear, one-to-one
relationship with the identified tracking metrics. This confirmed our conjecture that the feature
vector can be projected onto the actual damage state.
The tracking output was validated by verifying that the data corresponding to the macroscopic

crack evolution fit well the Paris fatigue crack growth model. Thus, we conclude that these
methods can be used in direct experimental studies to provide a much-needed insight and
feedback into the appropriate damage states and theories. Based on Fig. 8 we can assert that the
optimal damage observer captures the correct damage evolution characteristics at least for the
macroscopic crack propagation.
A very simple failure prediction scheme based on the damage tracking data and Paris

model-based power law was shown to accurately estimate the remaining time to failure
well in advance of actual fracture. For the given experiment that ran about 3.17 h, and
advanced warning of 1 h is shown to be possible even when using a simple empirical model of
damage.
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